Lasers for Life Sciences

Life Science Imaging

Life scientists demand higher resolution, faster image acquisition, and reliable laser sources to drive vital research into cell and organ function across a range of disciplines.

Chromacity design and manufacture a range of high-performance ultrashort pulse lasers that integrate seamlessly into microscopy set-ups to enhance in vivo imaging and pioneer research into drug discoveries, cancer detection and therapy.

Novel laser architecture, which stems from our IP, has led to the development of truly robust free-space or fiber coupled systems. Fiber coupling has contributed to optimum stability and high performance for two-photon microscopy and optogenetics.


With higher, more stable average powers, the Chromacity 1040 has a proven track record for multi-photon and second harmonic imaging at fixed wavelengths, which rival Ti:sapphire technology at a considerably lower price point.


A combination of high average power and ultrashort pulses, enable greater depth penetration without damaging biological samples. The high power also provides the ability to image over a larger field of view (compared with traditional methods) due to advances in holographic and SLM microscopy techniques.  This increases the amount of information that can be gathered from a sample.


Chromacity 1040 Femtosecond Laser

“We have used the Chromacity 1040 at several multiphoton microscopy workshops and courses. We particularly value the robustness and ease-of-use of the system.”
– R&D Manager, Scientifica UK

Seamless System Integration
High Average Powers (4 W)
Open API Connectivity
Web-based Interface
Remote Installation Capability
Plug & Play Functionality
Low Cost of Ownership

Chromacity’s systems are designed with plug & play functionality and remote installation capability. This means researchers spend more time conducting essential research and less time operating the equipment. Discover more about why Chromacity is your partner of choice for life science imaging. Email:

2-Single Plane Illumination Microscopy (Lightsheet Microscopy)

This technique is used to image intact organs, embryos and organisms by illuminating samples across a whole plane (or sheet).


By generating this sheet of light, the optical power is spread across the whole image, reducing photo-damage and stresses induced on living samples. Additionally, the excellent optical sectioning capability increases the SNR and creates images with higher contrast, when compared against confocal microscopy.


The Chromacity 1040 is an ideal source for 2-photon lightsheet microscopy, as its high average power and short pulse duration can help deliver cutting-edge images.

Multi-photon Optogenetics

In optogenetics there is a drive to study increasingly larger groups of neurons, and to image deeper into live brain tissue using multi-photon imaging techniques.


The Chromacity 1040 laser is an ideal source for 2-photon microscopy. It provides the required excitation and delivers four key technical benefits:


  • Allows time resolved measurements to be taken
  • Enables the capture of images at greater sample depths
  • High power allows the 1040 to be combined with wide-field techniques to image groups of neurons
  • Reduces photobleaching and photothermal degradation, allowing in vivo experiments to be more accessible


Our ultrafast lasers offer the requisite power and pulse duration to perform multi-neuron studies while also providing reliability that allows you to focus more on the imaging and less on the laser.

Second Harmonic Generation Microscopy

For label free imaging, SHG microscopy is an important capability which can reveal the structural organization and molecular orientation within non-centrosymmetric tissue structures.  Studies of crystalized bio-molecules such as starch, collagen and myosin, or fibrous structures such as tendons and muscles can be readily performed.


The high average power and short femtosecond pulse durations from the low-cost, easy-to-use Chromacity 1040 make it the ideal laser source to generate SHG images at depth.

Measuring Fluorescence Lifetimes

The measurement of fluorescence lifetimes provides a wealth of information on the local environment of biomolecules in living cells. An increasingly effective technique is time-correlated single photon counting (TCSPC). This is a technique whereby we can study the fluorescence of a sample monitored as a function of time after excitation by a pulse of light.


To demonstrate the capabilities of fiber-based lasers in measuring picosecond fluorescence lifetimes, the Chromacity 520 has been used in combination with a photoluminescence spectrometer (Edinburgh Instruments FLS1000) to measure the fluorescence lifetime of 4‑DASPI in ethanol (57 ps) and water (11 ps).

Equipment Integration

  • Single photon avalanche photodetectors / photomultiplier
  • Photoluminescence spectrometer
  • Confocal microscopes (Spinning Disk/Inverted)
  • Widefield microscopes
  • Pockel cells
Would you like to learn more?
Application Notes
Chromacity 1040
Chromacity 520


get in touch